Abstract Type : Oral Abstract Submission No. : 1350

PTEN-induced kinase 1 has association with renal aging process through cGAS -STING pathway

Min Heui Ha¹, Hyeyeon Lee¹, Man S Kim², Hyun-Ju An¹, Min-Ji Sung¹, Yu Ho Lee¹, Dong-Ho Yang¹, Yueun Choi³, So-Young Lee¹, Hye Yun Jeong¹

¹Department of Internal Medicine-Nephrology, CHA University, Korea, Republic of

²Department of Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Korea, Republic of

³Department of Department of Biomedical Science and Technology, Kyung Hee University, Korea, Republic of

Objectives: Dysfunctional mitochondria induce inflammation of the kidney, which is the major mediator of pro-aging process of chronic kidney disease. PTEN-induced kinase 1(PINK1) is a protein involved in the quality control of mitochondria and plays a role in regulating mitochondrial dysfunction. Although it is known that the mitochondrial DNA release promoted by PINK1 deficiency stimulates cyclic GMP–AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway eventually resulting in the inflammatory response, the role of PINK1 and cGAS-STING pathway in renal aging has not yet been clarified. This study aimed to investigate the relationship between PINK1 and renal aging especially through the cGAS-STING pathway.

Methods: To determine the role of PINK1 on renal aging process, renal fibrosis and tubular injury were compared in 4- and 24-month-old wild type (Pink1^{+/+}) and PINK1 knockout (Pink1^{-/-}) mice. To establish in vitro senescence model, H2O2 treatment on human renal proximal cells (HKC-8) was used. The changes of gene expression levels related to PINK1 were analyzed by RNA sequencing, applying transcriptomic and metabolomic analyses.

Results: The renal fibrosis and tubular injury were significantly aggravated in 24-month-old Pink1^{-/-} mice compared to 24-month-old Pink1^{+/+} mice. Western blot and RT-qPCR confirmed remarkably increased senescence markers and SASPs in 24-month Pink1^{-/-} mice and senescence-induced HKC-8 cells. The RNA sequencing of mice kidneys showed that inflammation-related pathways significantly increased in 24 month Pink1^{-/-}mice, and transcriptomic and metabolomic analyses showed that PINK1 has association with mitochondrial metabolism dysregulation. Finally, the STING pathway was significantly activated in 24-month Pink1^{-/-} mice and senescence-induced HKC-8 cells, which was inhibited by a specific inhibitor of STING, H-151.

Conclusions: In conclusion, PINK1 is associated with renal aging, and the dysregulation of mitochondria caused by PINK1 deficiency might lead to aging-related inflammatory responses through the cGAS-STING pathway.