The effects of periostin on the lipid metabolism in the aged kidney

Jung Nam An¹, Hyoseon Kim², Young Wook Choi¹, Jin Hyuk Kim¹, Kwang Pyo Kim², Jung Pyo Lee³
¹Department of Internal Medicine-Nephrology, SMG-SNU Boramae Medical Center, Korea, Republic of
²Department of Applied Chemistry; Department of Biomedical Science and Technology, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin; Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea, Republic of
³Department of Internal Medicine-Nephrology, Seoul National University Boramae Medical Center; Seoul National University College of Medicine, Korea, Republic of

Objectives: Periostin plays a crucial role in fibrosis, which is an important mechanism of kidney aging. Changes in lipid metabolism due to aging are known. In this study, we investigated the effect of periostin on lipid metabolism in kidney aging.

Methods: Wild type (WT) C57BL/6 mice and Postn null (Postn⁻⁻) mice aged 24 months were used. We analyzed lipids with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to systematically study the lipidome that changes as the aging process progresses. After sample preparation, total lipid was extracted, and lipid identification and selection were performed by LC-MS/MS analysis. Lipid quantification was also performed in each sample with multiple reaction monitoring-MS (MRM-MS).

Results: Serum creatinine levels were higher and tubular atrophy/interstitial fibrosis was prominent in the aged WT mice than in the aged Postn null mice. Through quantitative lipidomic profiling in LC-MRM-MS, 35 differentially regulated lipids were observed among a total of 430 quantified lipids. Phosphatidylcholines, triacylglycerol, cholesteryl ester and cholesterol were significantly higher in aged WT mice than in aged Postn null mice. Especially, linoleic acid, linolenic acid, arachidonic acid, and docosahexaenoic acid as PUFA in cholesteryl ester showed a large difference in expression amount between aged WT mice and aged Postn null mice. Although ceramide did not show any difference in the expression level of the two groups, ceramide-1-phosphate showed an increased expression level in aged WT mice and decreased in aged Postn null mice. In contrast, sphingomyelin, dehydrosphingomyelin, monoacylglycerol did not differ between the two groups.

Conclusions: In this study, we found that the changes of lipid metabolism significantly with the expression of periostin in aged kidneys. Further studies of specific mechanisms will be needed.